If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n-20=-8
We move all terms to the left:
n^2+n-20-(-8)=0
We add all the numbers together, and all the variables
n^2+n-12=0
a = 1; b = 1; c = -12;
Δ = b2-4ac
Δ = 12-4·1·(-12)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*1}=\frac{-8}{2} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*1}=\frac{6}{2} =3 $
| -4+x=-91 | | 2.1-p2=-4.7 | | 462.30m=8,321.50 | | 3d–6=3 | | -3(b-2)=11 | | 2(2x-15)=4x-30 | | 38x-2=36x+4 | | 19.1666666667=20c | | 12d-3d-6d-2d=3 | | -4/5-1/2x=3 | | -4x-1=68-9x | | 12m-7=245 | | 5.25+x=11.50 | | z-4/2=4z-9/3 | | -4x=-x+6 | | 5(3x+4)-2x=7x-6x+33 | | -5+6+2x+7=0 | | 2x+12+280=360 | | j/12=19 | | 110x-2=3(x+10) | | 5(a-1)=30 | | 45x−9=23 | | 19x+7=4x+12 | | 35q^2+24q=0 | | 3d-3+2(d+3)=13 | | 12+e+5=34 | | -2(8x+1)=30 | | 50x3/5=30 | | f/7=18 | | 96=8(q+3) | | x-47+16=180 | | 50x3/5=3= |